Как сделать расчет труб отопления отопления: учитываем все нюансы

Как сделать расчет труб отопления отопления: учитываем все

При монтаже системы отопления в частном доме либо квартире главной целью постоянно является извлечение большого КПД из оборудования, дабы затрачиваемые средства были расходованы именно на обогрев помещения.

Такое вероятно при верном подборе:

  • не только радиаторов и самой системы,
  • но и диаметра труб,
  • и материала их изготовления.

Давайте определим, как создавать такие расчёты, обратим внимание на то, какие конкретно материалы более выгодны и посмотрим видео ролик по этому материалу.

Трубы отопления

  • Диаметральный и гидравлический расчет трубопроводов вероятен только в том случае, если для этого имеется их главные параметры, такие как:
  1. Материал изготовления, к примеру, сталь, медь, чугун, хризотилцемент, полипропилен.
  2. Внутренний диаметр.
  3. Данные по материалу и диаметру фасонных деталей и фитингов.
  4. Толщина стенок труб, фасонных деталей и фитингов.
  • Неясно откуда показалось вывод, что при повышении диаметра труб увеличивается уровень качества отопления, поскольку при повышении площади трубопровода возрастает теплоотдача. Теоретически, это, само собой разумеется, весьма кроме того похоже на правду, но в действительности всё выглядит по-иному.
  • В первую очередь, для труб громадного диаметра нужно закачивать в систему много теплоносителя, который необходимо нагреть. Следовательно, возрастает расход потребляемой энергии (электричество, газ, жидкое либо жёсткое горючее). А трубы сами по себе не являются нагревательным прибором (в радиаторах для обогрева употребляется способ конвекции, другими словами, КПД существенно возрастает), получается, что расход энергоносителей и материалов не обоснован.
  • Помимо этого, повышение объёма жидкости в контуре ведёт к понижению давления в системе, следовательно, вам нужно будет устанавливать на возврате вспомогательный циркуляционный насос для отопительной системы, что опять-таки влечёт за собой определённые затраты. Само собой разумеется, кроме того при громадном диаметре труб контура достигнуть нужной температуры в отапливаемом помещении в полной мере быть может, но цена на энергоносители и материал окажется через чур завышенной.

Внимание! Для эксплуатации системы и оптимального монтажа отопления (при подборе диаметра) давление в каждом циркуляционном кольце должно на 10% быть больше утраты, каковые приводит к гидравлическому сопротивлению.

Определение диаметра

Для опытных расчётов по диаметру труб отопления инженерами-теплотехниками употребляется много формул и такие вычисления, в большинстве случаев, необходимы для проектов многоэтажных жилых и публичных сооружений, других учреждений и предприятий. Для своего дома вам вряд ли пригодятся такие правильные цифры, исходя из этого, мы предлагаем вам упрощённую схему, которой может воспользоваться любой сантехник.

Формула для аналогичных расчётов выглядит так: D = v354*(0.86*Q/?t)/V, а сейчас нам остаётся лишь подставлять значения параметров под буквы.

  • D — это диаметр трубы (см),
  • Q — нагрузка на измеряемый участок (кВт),
  • ?t — температурная отличие в подающей и возвратной трубе (t?C),
  • V — Скорость теплоносителя в системе (м/сек).

Примечание. В случае если на подаче теплоносителя у котла его температура образовывает 80 ?C , а на возврате у котла 60 ?C , то при таких условиях значение ?t будет равняется ?t=80-60=20 ?C .

РасходПропускная свойство трубы (кг/час)
Ду трубы15 мм20 мм25 мм32 мм40 мм50 мм65 мм80 мм100 мм
Па/ммбар/м?0,15м/сек?0,15м/сек0,3м/сек
90,00,90017340374516272488471696121494030240
92,50,92517640775616522524478897561515630672
95,00,95017641476716782560486099001537231104
97,50,975180421778169925964932100441555231500
100,01,000184425788172426325004101521576831932
120,01,200202472871189728985508111961735235100
140,01,400220511943205931435976121321879238160
160,01,6002345471015221033736408129962016040680
180,01,8002525831080235435896804138242142043200
200,02,0002666191154248837807200145802264445720
220,02,2002816521202261739967560153362376047880
240,02,4002886801256274041767920160562487650400
260,02,6003067131310285543568244167402592052200
280,02,8003177421364297044568568173382692854360
300,03,0003317671415307846808802180002790056160

Пропорциональная зависимость между диаметром труб и пропускной способностью

Расчёт тепловой мощности (нагрузки)

Для определения оптимальной тепловой мощности системы отопления частного дома вы имеете возможность применять следующую формулу: Qt=V*?t*K/860.

Сейчас вам опять-таки остаётся лишь подставить цифровые значения на место знаков и тут:

  • Qt — это искомая мощность тепловой энергии для данного помещения (кВт/час),
  • V — объём обогреваемого помещения (м3),
  • ?t — температурная отличие в подающей и возвратной трубе (t?C),
  • K — коэффициент потерь тепла помещения (зависит от типа здания, толщины стен и из термоизоляции),
  • 860 — перевод в кВт/час.

В частном секторе постройки смогут очень сильно различаться друг от друга, но, однако, там обычно применяют следующие значения коэффициента потерь тепла (K):

  • В случае если архитектурное сооружение имеет упрощённую конструкцию (дерево, гофрированный металлопрокат) и там отсутствует изоляция, то K= 3-4,
  • Упрощённая конструкция архитектурного сооружения со не сильный степенью термоизоляции, к примеру, кладка в один целый кирпич либо пеноблок 405x400x200 мм — тут K=2-2,9,
  • В стандартных архитектурных сооружениях (кладка в два кирпича и маленькое количество дверей и окон, крыша — стандарт) K= 1-1,9,
  • При высокой степени термоизоляции для стандартных архитектурных сооружений с маленьким числом дверей и окон и утеплённой крышей и полом, инструкция показывает на то, что K=0,6-0,9.

В случае если вам нужно произвести расчёт трубного диаметра, то, как уже было отмечено выше, вам нужно значение отличия температур между помещением и улицей. В помещении за точку отсчёта в большинстве случаев берётся или комнатная температура (18-20 ?C), или та, которая вам наиболее подходит, а со стороны улицы вам необходимо подставить среднее значение, которое принято для вашего региона.

К примеру, ваша помещение имеет объём 3,5*5,5*2,6=50,05 м3 и она прекрасно утеплена, другими словами, там толстые либо утеплённые стенки, утеплён пол и потолок и воспользуемся коэффициентом 0,9. В Подмосковье средняя температура окружающей среды в зимний период образовывает -28 ?C, а для микроклимата в помещении заберём значение 20 ?C, тогда значение ?t будет равняется 28+20=48 ?C. При таких условиях, Qt=50,05*48*0,9/860?2,5/час.

Скорость теплоносителя

Примечание. Минимальная скорость теплоносителя для систем отопления не должно быть менее 0,2-0,25 м/сек. В тех случаях, в то время, когда скорость падает ниже этого значения, из жидкости начинается выделение воздуха, что содействует образованию воздушных пробок. В таких случаях возможно частично утеряна работоспособность контура, а в отдельных обстановках это может привести к полному бездействию системы, поскольку поток остановится по большому счету и это случится при работающем циркуляционном насосе.

Внутренний диаметр трубТепловой поток (Q) при ?t=20Расход воды (кг/час) при скорости перемещения (м/сек)
0,10,20,30,40,50,60,70,80,91,01,1
84091881835122853163570204488245310528611233270141367915840381764496193
106392712775519168225551103191137383216544711925109220574824763872757025302
12920411839792769119367915845981985518237643827764382778277356919739510117435
15141762287412443111855748247718530986223711005943811496494129335561437061815807680
20255511051092207664330102194391277454915328659178837592043887922992989255471099281021208
2529921727983343119755151596768719959858239501030279421202319341373359261545399171716439091888
3265402811308056219620844261601125327001406392401687457801969523202250588602531654012812719413093
40102194392043887930658131840875175851094219761313263671532307681751351591969395510218843341124074834
50159676873193413734790120606386827467983534339580241201176548061277355493143702617915965968661756357552
701129513456259026919388540371251815383156476672918777180742190659420250361107682816561211131295213457344247148013
100638682746127735549319160382392554711098531933813732383206164784470741922451694121971574809247176386772746370254430210

Таблица для определения трубного диаметра

Примечание. Плотность воды при 80 ?C равна 971,8 кг/м3.

Скорость жидкости в отопительном контуре может составлять от 0,6м/сек до 1,5м/сек, но в тех случаях, в то время, когда соблюдается большее значение, то значительно понижаются гидравлические шумы в системе, исходя из этого, скорость 1,5м/сек мы и примем за отправную величину.

В то время, когда у нас имеются все нужные значения, мы можем подставить их в формулу D = v354*(0.86*Q/?t)/V, при таких условиях у нас окажется D = v354*(0.86*2,5/20)/1,5?1,34, значит, нам пригодится труба с внутренним диаметром 14 мм

Само собой разумеется, в то время, когда вы делаете своими руками систему отопления у себя дома, то возможность того, что вы станете применять формулы для расчётов, ничтожно мелка, но в этом случае для вас имеется пособие в виде таблиц, расположенных в данной статье. Помимо этого, в таблице учтён тип циркуляции жидкости, который возможно принудительным либо естественным.

На данный момент значительно чаще (особенно в частном секторе) радиаторные контуры, и разводка труб отопления к гребёнкам тёплого пола выполняется из полипропилена. Из всех используемых в этом случае, данный материал владеет мельчайшей теплопроводностью, но, однако, в тех местах, где трубы проходят по холодным участкам, их необходимо утеплять.

Заключение

Напоследок возможно заявить, что чаще всего применяемый наружный диаметр полипропиленовых труб для отопительных контуров в частном секторе, это 20, 25,32 и 40 мм. Подводку к радиаторам по большей части делают сечением 20 мм, иногда 25 мм, а более толстые трубы употребляются в качестве стояков.

Расчет системы отопления частного дома: правила и примеры расчёта

Отопление частного дома – необходимый элемент комфортабельного жилья. Согласитесь, что к обустройству отопительного комплекса следует подходить внимательно, т.к. ошибки обойдутся недешево. Но вы никогда не занимались подобными вычислениями и не знаете как правильно их выполнять?

Мы поможем вам – в нашей статье подробно рассмотрим, как делается расчет системы отопления частного дома для эффективного восполнения потерь тепла в зимние месяцы.

Приведем конкретные примеры, дополнив материал статьи наглядными фото и полезными видеосоветами, а также актуальными таблицами с показателями и коэффициентами, необходимыми для вычислений.

Теплопотери частного дома

Здание теряет тепло из-за разности температур воздуха внутри и вне дома. Теплопотери тем выше, чем более значительна площадь ограждающих конструкций здания (окон, кровли, стен, фундамента).

Также потери тепловой энергии связаны с материалами ограждающих конструкций и их размерами. К примеру, теплопотери тонких стен больше, чем толстых.

Эффективный расчет отопления для частного дома обязательно учитывает материалы, использованные при постройке ограждающих конструкций.

Например, при равной толщине стены из дерева и кирпича проводят тепло с разной интенсивностью – теплопотери через деревянные конструкции идут медленнее. Одни материалы пропускают тепло лучше (металл, кирпич, бетон), другие хуже (дерево, минвата, пенополистирол).

Атмосфера внутри жилой постройки косвенно связана с внешней воздушной средой. Стены, проемы окон и дверей, крыша и фундамент зимой передают тепло из дома наружу, поставляя взамен холод. На них приходится 70-90% от общих теплопотерь коттеджа.

Постоянная утечка тепловой энергии за отопительный сезон происходит также через вентиляцию и канализацию.

При расчете теплопотерь постройки ИЖС эти данные обычно не учитывают. Но включение в общий тепловой расчет дома потерь тепла через канализационную и вентиляционную системы – решение все же правильное.

Выполнить расчёт автономного контура отопления загородного дома без оценки теплопотерь его ограждающих конструкций невозможно. Точнее, не получится определить мощность отопительного котла, достаточную для обогрева коттеджа в самые лютые заморозки.

Анализ реального расхода тепловой энергии через стены позволит сравнить затраты на котловое оборудование и топливо с расходами на теплоизоляцию ограждающих конструкций.

Ведь чем более энергоэффективен дом, т.е. чем меньше тепловой энергии он теряет в зимние месяцы, тем меньше расходы на приобретение топлива.

Для грамотного расчета системы отопления потребуется коэффициент теплопроводности распространенных строительных материалов.

Расчет потерь тепла через стены

На примере условного двухэтажного коттеджа рассчитаем теплопотери через его стеновые конструкции.

  • квадратная «коробка» с фасадными стенами шириной 12 м и высотой 7 м;
  • в стенах 16 проемов, площадь каждого 2,5 м 2 ;
  • материал фасадных стен – полнотелый кирпич керамический;
  • толщина стены – 2 кирпича.

Далее проведем вычисление группы показателей, из которых и складывается общее значение потерь тепла через стены.

Показатель сопротивления теплопередачи

Чтобы выяснить показатель сопротивления теплопередачи для фасадной стены, нужно разделить толщину стенового материала на его коэффициент теплопроводности.

Для ряда конструкционных материалов данные по коэффициенту теплопроводности представлены на изображениях выше и ниже.

Наша условная стена выстроена из керамического полнотелого кирпича, коэффициент теплопроводности которого – 0,56 Вт/м· о С. Ее толщина с учетом кладки на ЦПР – 0,51 м. Разделив толщину стены на коэффициент теплопроводности кирпича, получаем сопротивление теплопередаче стены:

0,51 : 0,56 = 0,91 Вт/м 2×о С

Результат деления округляем до двух знаков после запятой, в более точных данных по сопротивлению теплопередачи потребности нет.

Площадь внешних стен

Поскольку примером выбрано квадратное здание, площадь его стен определяется умножением ширины на высоту одной стены, затем на число внешних стен:

12 · 7 · 4 = 336 м 2

Итак, нам известна площадь фасадных стен. Но как же проемы окон и дверей, занимающие вместе 40 м2 (2,5·16=40 м 2 ) фасадной стены, нужно ли их учитывать?

Действительно, как же корректно рассчитать автономное отопление в деревянном доме без учета сопротивления теплопередачи оконных и дверных конструкций.

Если необходимо обсчитать теплопотери здания крупной площади или теплого дома (энергоэффективного) – да, учет коэффициентов теплопередачи оконных рам и входных дверей при расчете будет правильным.

Однако для малоэтажных построек ИЖС, возводимых из традиционных материалов, дверными и оконными проемами допустимо пренебречь. Т.е. не отнимать их площадь из общей площади фасадных стен.

Общие теплопотери стен

Выясняем потери тепла стены с ее одного квадратного метра при разнице температуры воздуха внутри и снаружи дома в один градус.

Для этого делим единицу на сопротивление теплопередачи стены, вычисленное ранее:

1 : 0,91 = 1,09 Вт/м 2 · о С

Зная теплопотери с квадратного метра периметра внешних стен, можно определить потери тепла при определенных уличных температурах.

К примеру, если в помещениях коттеджа температура +20 о С, а на улице -17 о С, разница температур составит 20+17=37 о С. В такой ситуации общие теплопотери стен нашего условного дома будут:

0,91 · 336 · 37 = 11313 Вт,

Где: 0,91 – сопротивление теплопередачи квадратного метра стены; 336 – площадь фасадных стен; 37 – разница температур комнатной и уличной атмосферы.

Пересчитаем полученную величину теплопотерь в киловатт-часы, они удобнее для восприятия и последующих расчетов мощности отопительной системы.

Теплопотери стен в киловатт-часах

Вначале выясним, столько тепловой энергии уйдет через стены за один час при разнице температур в 37 о С.

Напоминаем, что расчет ведется для дома с конструкционными характеристиками, условно выбранными для демонстрационно-показательных вычислений:

Читайте также:  Чугунный радиатор МС-140: положительные качества и недостатки, характеристики

11313 · 1 : 1000 = 11,313 кВт·ч,

Где: 11313 – величина теплопотерь, полученная ранее; 1 – час; 1000 – количество ватт в киловатте.

Для вычисления потерь тепла за сутки полученное значение теплопотерь за час умножаем на 24 часа:

11,313 · 24 = 271,512 кВт·ч

Для наглядности выясним потери тепловой энергии за полный отопительный сезон:

7 · 30 · 271,512 = 57017,52 кВт·ч,

Где: 7 – число месяцев в отопительном сезоне; 30 – количество дней в месяце; 271,512 – суточные теплопотери стен.

Итак, расчетные теплопотери дома с выбранными выше характеристиками ограждающих конструкций составят 57017,52 кВт·ч за семь месяцев отопительного сезона.

Учет влияния вентиляции частного дома

Расчет вентиляционных потерь тепла в отопительный сезон в качестве примера проведем для условного коттеджа квадратной формы, со стеной 12-ти метровой ширины и 7-ми метровой высоты.

Без учета мебели и внутренних стен внутренний объем атмосферы в этом здании составит:

12 · 12 · 7 = 1008 м 3

При температуре воздуха +20 о С (норма в сезон отопления) его плотность равна 1,2047 кг/м 3 , а удельная теплоемкость 1,005 кДж/(кг· о С).

Вычислим массу атмосферы в доме:

1008 · 1,2047 = 1214,34 кг,

Где: 1008 – объем домашней атмосферы; 1,2047 – плотность воздуха при t +20 о С .

Предположим пятикратную смену воздушного объема в помещениях дома. Отметим, что точная потребность в приточном объеме свежего воздуха зависит от числа жильцов коттеджа.

При средней разнице температур между домом и улицей в отопительный сезон, равной 27 о С (20 о С домашняя, -7 о С внешняя атмосфера) за сутки на обогрев приточного холодного воздуха понадобиться тепловой энергии:

5 · 27 · 1214,34 · 1,005 = 164755,58 кДж,

Где: 5 – число смен воздуха в помещениях; 27 – разница температур комнатной и уличной атмосферы; 1214,34 – плотность воздуха при t +20 о С; 1,005 – удельная теплоемкость воздуха.

Переведем килоджоули в киловатт-часы, поделив значение на количество килоджоулей в одном киловатт-часе (3600):

164755,58 : 3600 = 45,76 кВт·ч

Выяснив затраты тепловой энергии на обогрев воздуха в доме при пятикратной его замене через приточную вентиляцию, можно рассчитать «воздушные» теплопотери за семимесячный отопительный сезон:

7 · 30 · 45,76 = 9609,6 кВт·ч,

Где: 7 – число «отапливаемых» месяцев; 30 – среднее число дней в месяце; 45,76 – суточные затраты тепловой энергии на нагрев приточного воздуха.

Вентиляционные (инфильтрационные) энергозатраты неизбежны, поскольку обновление воздуха в помещениях коттеджа жизненно необходимо.

Потребности нагрева сменяемой воздушной атмосферы в доме требуется вычислять, суммировать с теплопотерями через ограждающие конструкции и учитывать при выборе отопительного котла. Есть еще один вид тепловых энергозатрат, последний – канализационные теплопотери.

Затраты энергии на подготовку ГВС

Если в теплые месяцы из крана в коттедж поступает холодная вода, то в отопительный сезон она – ледяная, с температурой не выше +5 о С. Купание, мытье посуды и стирка невозможны без нагрева воды.

Набираемая в бачок унитаза вода контактирует через стенки с домашней атмосферой, забирая немного тепла. Что происходит с водой, нагретой путем сжигания не бесплатного топлива и потраченной на бытовые нужды? Ее сливают в канализацию.

Рассмотрим на примере. Семья из трех человек, предположим, расходует 17 м 3 воды ежемесячно. 1000 кг/м 3 – плотность воды, а 4,183 кДж/кг· о С – ее удельная теплоемкость.

Средняя температура нагрева воды, предназначенной для бытовых нужд, пусть будет +40 о С. Соответственно, разница средней температуры между поступающей в дом холодной водой (+5 о С) и нагретой в бойлере (+30 о С) получается 25 о С.

Для расчета канализационных теплопотерь считаем:

17 · 1000 · 25 · 4,183 = 1777775 кДж,

Где: 17 – месячный объем расхода воды; 1000 – плотность воды; 25 – разница температур холодной и нагретой воды; 4,183 – удельная теплоемкость воды;

Для пересчета килоджоулей в более понятные киловатт-часы:

1777775 : 3600 = 493,82 кВт·ч

Таким образом, за семимесячный период отопительного сезона в канализацию уходит тепловая энергия в объеме:

493,82 · 7 = 3456,74 кВт·ч

Расход тепловой энергии на нагрев воды для гигиенических нужд невелик, в сравнении с теплопотерями через стены и вентиляцию. Но это ведь тоже энергозатраты, нагружающие отопительный котел или бойлер и вызывающие расход топлива.

Расчет мощности отопительного котла

Котел в составе системы отопления предназначен для компенсации теплопотерь здания. А также, в случае двухконтурной системы или при оснащении котла бойлером косвенного нагрева, для согревания воды на гигиенические нужды.

Вычислив суточные потери тепла и расход теплой воды «на канализацию», можно точно определить необходимую мощность котла для коттеджа определенной площади и характеристик ограждающих конструкций.

Для определения мощности котла отопления необходимо рассчитать затраты тепловой энергии дома через фасадные стены и на нагрев сменяемой воздушной атмосферы внутренних помещений.

Требуются данные по теплопотерям в киловатт-часах за сутки – в случае условного дома, обсчитанного в качестве примера, это:

271,512 + 45,76 = 317,272 кВт·ч,

Где: 271,512 – суточные потери тепла внешними стенами; 45,76 – суточные теплопотери на нагрев приточного воздуха.

Соответственно, необходимая отопительная мощность котла будет:

317,272 : 24 (часа) = 13,22 кВт

Однако такой котел окажется под постоянно высокой нагрузкой, снижающей его срок службы. И в особенно морозные дни расчетной мощности котла будет недостаточно, поскольку при высоком перепаде температур между комнатной и уличной атмосферами резко возрастут теплопотери здания.

Поэтому выбирать котел по усредненному расчету затрат тепловой энергии не стоит – он с сильными морозами может и не справиться.

Рациональным будет увеличить требуемую мощность котлового оборудования на 20%:

13,22 · 0,2 + 13,22 = 15,86 кВт

Для вычисления требуемой мощности второго контура котла, греющего воду для мытья посуды, купания и т.п., нужно разделить месячное потребление тепла «канализационных» теплопотерь на число дней в месяце и на 24 часа:

493,82 : 30 : 24 = 0,68 кВт

По итогам расчетов оптимальная мощность котла для коттеджа-примера равна 15,86 кВт для отопительного контура и 0,68 кВт для нагревательного контура.

Выбор радиаторов отопления

Традиционно мощность отопительного радиатора рекомендовано выбирать по площади отапливаемой комнаты, причем с 15-20% завышением мощностных потребностей на всякий случай.

На примере рассмотрим, насколько корректна методика выбора радиатора «10 м2 площади – 1,2 кВт».

Исходные данные: угловая комната на первом уровне двухэтажного дома ИЖС; внешняя стена из двухрядной кладки керамического кирпича; ширина комнаты 3 м, длина 4 м, высота потолка 3 м.

По упрощенной схеме выбора предлагается рассчитать площадь помещения, считаем:

3 (ширина) · 4 (длина) = 12 м 2

Т.е. необходимая мощность радиатора отопления с 20% надбавкой получается 14,4 кВт. А теперь посчитаем мощностные параметры отопительного радиатора на основании теплопотерь комнаты.

Фактически площадь комнаты влияет на потери тепловой энергии меньше, чем площадь ее стен, выходящих одной стороной наружу здания (фасадных).

Поэтому считать будем именно площадь «уличных» стен, имеющихся в комнате:

3 (ширина) · 3 (высота) + 4 (длина) · 3 (высота) = 21 м 2

Зная площадь стен, передающих тепло «на улицу», рассчитаем теплопотери при разнице комнатной и уличной температуры в 30 о (в доме +18 о С, снаружи -12 о С), причем сразу в киловатт-часах:

0,91 · 21 · 30 : 1000 = 0,57 кВт,

Где: 0,91 – сопротивление теплопередачи м2 комнатных стен, выходящих «на улицу»; 21 – площадь «уличных» стен; 30 – разница температур внутри и снаружи дома; 1000 – число ватт в киловатте.

Выходит, что для компенсации потерь тепла через фасадные стены данной конструкции, при 30 о разнице температур в доме и на улице достаточно отопления мощностью 0,57 кВт·ч. Увеличим необходимую мощность на 20, даже на 30% – получаем 0,74 кВт·ч.

Таким образом, реальные мощностные потребности отопления могут быть значительно ниже, чем торговая схема «1,2 кВт на квадратный метр площади помещения».

Причем корректное вычисление необходимых мощностей отопительных радиаторов позволит сократить объем теплоносителя в системе отопления, что уменьшит нагрузку на котел и расходы на топливо.

Выводы и полезное видео по теме

Куда уходит тепло из дома – ответы предоставляет наглядный видеоролик:

В видеоролике рассмотрен порядок расчета теплопотерь дома через ограждающие конструкции. Зная потери тепла, получится точно рассчитать мощности отопительной системы:

Подробное видео о принципах подбора мощностных характеристик котла отопления смотрите ниже:

Выработка тепла ежегодно дорожает – растут цены на топливо. А тепла постоянно не хватает. Относиться безразлично к энергозатратам коттеджа нельзя – это совершенно невыгодно.

С одной стороны каждый новый сезон отопления обходится домовладельцу дороже и дороже. С другой стороны утепление стен, фундамента и кровли загородного стоит хороших денег. Однако чем меньше тепла уйдет из здания, тем дешевле будет его отапливать.

Сохранение тепла в помещениях дома – основная задача отопительной системы в зимние месяцы. Выбор мощности отопительного котла зависит от состояния дома и от качества утепления его ограждающих конструкций. Принцип «киловатт на 10 квадратов площади» работает в коттедже среднего состояния фасадов, кровли и фундамента.

Вы самостоятельно рассчитывали систему отопления для своего дома? Или заметили несоответствие вычислений, приведенных в статье? Поделитесь своим практическим опытом или объемом теоретических знаний, оставив комментарий в блоке под этой статьей.

Самостоятельный расчёт индивидуальной системы отопления

Из всех известных на данный момент вариантов для обогрева собственного дома наиболее распространённым видом является индивидуальная система водяного отопления. Масляные радиаторы, камины, печи, тепловентиляторы и обогреватели инфракрасного излучения зачастую используют как вспомогательные приборы.

Система отопления частного дома состоит из отопительных приборов, трубопровода и запорно-регулирующих механизмов, всё это служит для транспортировки тепла от теплогенератора к конечным точкам отопления помещений. Важно понимать, что надёжность, долговечность и эффективность индивидуальной системы отопления зависит от её правильного расчёта и монтажа, а также от качества используемых материалов в данной системе и её грамотной эксплуатации.

Расчёт системы отопления

Рассмотрим подробно упрощённый вариант расчёта системы водяного отопления, в котором мы будем использовать стандартные и общедоступные комплектующие. На рисунке схематически представлена индивидуальная система отопления частного дома на основе одноконтурного котла. Прежде всего, нам необходимо определиться с его мощностью, так как он является основой всех вычислений в дальнейшем. Выполним данную процедуру по описанной ниже схеме.

Общая площадь помещения: S = 78,5; общий объём: V = 220

У нас имеется одноэтажный дом с тремя комнатами, прихожей, коридором, кухней, ванной и туалетом. Зная площадь каждого отдельного помещения и высоту комнат, необходимо произвести элементарные расчёты для того, чтобы вычислить объём всего дома:

Таким образом, мы посчитали объём всех отдельных помещений, благодаря чему теперь можно вычислить общий объём дома, он равен 220 кубическим метрам. Заметьте, мы также посчитали объём коридора, но на самом деле там не указано ни одного отопительного прибора, для чего это нужно? Дело в том, что коридор также будет отапливаться, но пассивным образом, за счёт циркуляции тепла, поэтому нам необходимо внести его в общий список отопления, для того, чтобы расчёт был правильным и дал нужный результат.

Следующий этап расчёта мощности котла мы будем проводить, исходя из необходимого количества энергии на один кубический метр. Для каждого региона существует свой показатель — в наших вычислениях используем 40 Вт на кубический метр, исходя из рекомендаций для регионов европейской части СНГ:

Полученную цифру необходимо возвести в коэффициент 1,2, что даст нам 20% запаса мощности для того, чтобы котёл постоянно не работал на полную мощность. Таким образом, мы понимаем, что нам необходим котёл, который способен вырабатывать 10,6 кВт (стандартные одноконтурные котлы выпускаются мощностью 12–14 кВт).

Расчёт радиаторов

В нашем случае мы будем использовать стандартные алюминиевые радиаторы высотой 0,6 м. Мощность каждого ребра такого радиатора при температуре 70 °С составляет 150 Вт. Далее мы посчитаем мощность каждого радиатора и количество условных рёбер:

  • комната 1: Округляем до 1500 и получаем 10 условных рёбер, но поскольку у нас два радиатора, оба под окнами, мы возьмём один с 6-ю рёбрами, второй с 4-мя.
  • комната 2: Округляем до 1500 и получаем один радиатор с 10-ю рёбрами.
  • комната 3: Округляем до 2700 и получаем три радиатора: 1-й и 2-й по 5 рёбер, 3-й (боковой) — 8 рёбер.
  • прихожая: Округляем до 1200 и получаем два радиатора по 4 ребра.
  • ванная: . Тут температура должна быть немного выше, получается 1 радиатор с 4-мя рёбрами.
  • туалет: Округляем до 450 и получаем три ребра.
  • кухня: Округляем до 2100 и получаем два радиатора по 7 рёбер.

В конечном результате мы видим, что нам необходимо 12 радиаторов общей мощностью:

Исходя из последних расчётов, видно, что наша индивидуальная система отопления без проблем справится с возложенной на неё нагрузкой.

Выбор труб

Трубопровод для системы индивидуального отопления является средой для транспортировки тепловой энергии (в частности, нагретой воды). На отечественном рынке трубы для монтажа систем представлены в трёх основных видах:

Металлические трубы имеют ряд значительных недостатков. Кроме того, что они обладают большим весом и требуют специального оборудования для монтажа, а также наличие опыта, они ещё подвержены коррозии и могут накапливать статическое электричество. Хороший вариант — медные трубы, они способны выдерживать температуру до 200 градусов и давление около 200 атмосфер. Но медные трубы отличаются спецификой в монтаже (требуется специальное оборудование, серебряный припой и большой опыт работы), кроме того их стоимость очень велика. Самым популярным вариантом считаются пластиковые трубы. И вот почему:

  • они имеют алюминиевую основу, которая с двух сторон покрыта пластмассой, благодаря чему они обладают огромной прочностью;
  • они абсолютно не пропускают кислород, что позволяет свести к нулю процесс образования коррозии на внутренних стенках;
  • благодаря алюминиевому армированию у них очень низкий коэффициент линейного расширения;
  • пластиковые трубы антистатичны;
  • обладают малым гидравлическим сопротивлением;
  • не требуется специальных навыков для монтажа.

Монтаж системы

Первым делом нам требуется установить секционные радиаторы. Их надо размещать строго под окнами, тёплый воздух от радиатора будет препятствовать проникновению холодного воздуха из окна. Для монтажа секционных радиаторов не понадобится никакого специального оборудования, лишь перфоратор и строительный уровень. Необходимо строго придерживаться одного правила: все радиаторы в доме должны быть смонтированы строго на одном горизонтальном уровне, от этого параметра зависит общая циркуляция воды в системе. Также соблюдайте вертикальное расположение рёбер радиатора.

После монтажа радиаторов можно приступать к прокладке труб. Необходимо заранее промерить общую длину труб, а также посчитать количество всевозможных фитингов (колен, тройников, заглушек и пр.). Для монтажа пластиковых труб понадобится всего три инструмента — рулетка, ножницы для труб и паяльник. На большинстве таких труб и фитингов есть лазерная перфорация в виде насечек и направляющих линий, что даёт возможность по месту выполнять монтаж правильно и ровно. Работая с паяльником, следует придерживаться только одного правила — после того как вы расплавили и состыковали концы изделий, ни в коем случае не прокручивайте их, если с первого раза не получилось припаять ровно, иначе возможна течь в этом месте. Лучше заранее потренируйтесь на кусочках, которые пойдут в отходы.

Читайте также:  Автоматические твердотопливные котлы: как топить дом дровами, не подкидывая их в топку

Дополнительные приборы

По статистике система с пассивной циркуляцией воды будет исправно функционировать, если площадь помещения не превышает 100–120 м 2 . В противном случае необходимо использовать специальные насосы. Конечно, существует ряд котлов, в которые уже встроены насосные системы и они сами обеспечивают циркуляцию воды по трубам, если у вас не такой, то следует приобрести его отдельно.

На отечественном рынке их выбор очень велик, к тому же они отвечают всем необходимым требованиям — потребляют мало электроэнергии, бесшумны и малогабаритны. Монтируют циркуляционные насосы на концах веток отопления. Таким образом, насос прослужит дольше, так как он не будет находиться под прямым воздействием горячей воды.

Пример однотрубной системы отопления с принудительной циркуляцией: 1 — котёл; 2 — группа безопасности; 3 — радиаторы отопления; 4 — игольчатый кран; 5 — расширительный бак; 6 — слив; 7 — водопровод; 8 — фильтр грубой очистки воды; 9 — циркуляционный насос; 10 — шаровые краны

Из всего вышеперечисленного становится ясно, что с монтажом подобной системы без труда справятся два или три человека, для этого не требуется обладать специальными профессиональными навыками, главное, уметь пользоваться элементарными строительными инструментами. В нашей статье мы рассмотрели систему индивидуального отопления, собранную с помощью стандартных комплектующих, их цена и общедоступность позволят почти каждому у себя дома смонтировать аналогичную систему отопления.

Какой должен быть диаметр труб отопления?

Когда перед вами встаёт необходимость установки труб отопления для котла, важно грамотно рассчитать их параметры. Также здесь важен тип системы отопления. Если она работает за счет принудительной циркуляции, то теплоноситель движется благодаря насосу циркуляционного типа. И при подборке труб нужно учитывать их главную функцию – доводить требуемый объём тепла к нагревателям (радиаторам, либо регистрам).

Чтобы вычислить диаметр труб отопления потребуются такие данные:

  1. Совокупные тепловые потери всего дома, либо квартиры.
  2. Мощь отопительных устройств в каждом помещении.
  3. Длина трубопровода.
  4. Метод разводки технологии (с одной трубой, с двумя, наличие натуральной или вынужденной циркуляции).

Далее предложен пример схемы, составленной на основе этих данных.

Для вычисления диаметра идёт схема с обозначенными показателями теплового воздействия на каждой составляющей.

Также следует учесть и такой нюанс: если будете ставить полипропиленовые или медные трубы, нужно знать, что у них делается маркировка внешнего диаметра. Что выявить внутренний диаметр, следует вычесть от внешнего диаметра толщину стенки.

У изделий из стали и металлопластика обозначается внутренний диаметр.

Тонкости с определением

Скрупулёзный расчёт сечения трубы сделать невозможно. Необходимо выбирать одну из нескольких версий. Причина: для достижения одного эффекта годятся различные способы. То есть встаёт задача по подаче к радиаторам требуемого объёма. При этом элементы должны нагреться равномерно.

  1. Устроить трубы с меньшим диаметром. Тогда подача теплового носителя происходит со значительной скоростью.
  2. Сделать технологию с трубами большего сечения, но с более медленным движением.

Первая версия более популярна. Причины:

  1. Приемлемые цены для труб меньших диаметров.
  2. Удобная работа с такими трубами.
  3. Когда делается открытая прокладка, эти трубы менее выделяются.
  4. При внедрении в пол или стены трубам нужны малогабаритные штробы.
  5. При скромном диаметре концентрируется меньше тепла, в итоге сокращается инертность, и экономится топливо.

Расчёт диаметра на основе мощи радиаторов

Существуют нормативные диаметры, высчитан определённый объём тепла, которое должно следовать по этим трубам. И постоянность рассчитывать одни и те же значения не рационально. По этой причине были сформированы вспомогательные расчётные таблицы. По этим данным на основе нужного объёма тепла, динамики движения теплового носителя (ДДТН) и температур работы технологии, вычисляется потенциальный диаметр трубы для систем отопления. И для вычисления сечения в отопительной сети нужно найти подходящие данные и по ним ориентироваться в размерах.

Рассчитывать требующийся диаметр следует по указанной ниже формуле, после чего добытые показатели отразить в таблице.

Расчет диаметра трубы отопления

D —трубопроводый диаметр (по умолчанию), мм

∆t° —температурные отличия в подаче и обратном движении, °С

Q — воздействие на конкретный участок сети, кВт — вычисленный вами объём тепла для обогреваемой комнаты.

V —ДДТН, м/с — используется из конкретного спектра.

В индивидуальной отопительной технологии ДДТН бывает от 0,2до 1,5 м/с. Согласно обширной практике, оптимальный показатель лежит в диапазоне 0,3 м/с — 0,7 м/с.

Если ДДТН ниже, то образуется воздушная пробка. А если выше, появляются сильные шумы.

Подходящий интервал скоростей подбирается по таблице. Применяются таблицы для изделий из разного материала (металла, пластика, полипропилена, металлопластика, меди). Есть данные для нормативных рабочих режимов: с высокой и средней температурной составляющей.

Далее приведены примеры работы с разными отопительными системами.

Пример 1. Система с двумя трубами.

  1. В двухэтажном доме действует данная система.
  2. На каждом из этажей есть крылья в количестве двух.
  3. Будут применяться трубы из полипропилена.
  4. Рабочий режим 80/60.
  5. Температурная дельта 20 °C
  6. Тепловые потери всего жилого помещения – 38 кВт. Из них 20 кВт получаются на первый этаж, 18 КВт – на второй.

Здесь работают 2 схемы.

Далее следует таблица для вычисления диаметра. Розоватые участки – это участки оптимальной ДДТН.

  1. Вычисление трубы для зоны от котла до начального разветвления. Здесь идёт весь тепловой носитель. Объём тепла – 38 кВт. В таблице отыскивается нужная строка. По неё следуйте до розоватой зоны и поднимайтесь вверх. Подходящие диаметры: 40 и 50 мм. Лучше использовать меньший.
  2. Посмотрите на схему. Где идёт разделение потока по этажам. В таблице отыскиваются нужные строки, выявляется сечение труб. Для развода обеих веток подходит D = 32 мм.
  3. Каждый контур делится на две ветки. У них не отличий по нагрузке. На первом этаже в правую и левую сторону следует по 10 кВт. (результат деления 20 кВт). На втором получается 9 кВт. В таблице ищутся показатели ля этих зон: 25 мм. Такой размер применяется до понижения теплового воздействия до 5 кВт. Затем следует сечение 20 мм. Вычисляя значения для первого этажа, на данный параметр нужно перейти после второго обогревателя, а на втором этаже – после третьего.Специалисты рекомендуют перестраиваться на 20 мм при воздействии в 3 кВт.

После этих действий диаметры для указанных труб в обозначенных условиях найдены. Для обратного движения рассчитывать сечение не надо. А для разводки используйте те же трубы, что и для подачи.

Если будете задействовать не полипропиленовые изделия, вам помогут таблицы, в которых отражены значения по выбранному вами материалу.

Пример 2. Сеть с одной трубой. Принудительная циркуляция.

Расчёты идут по тому же принципу. Отличие в методе. Здесь применяется другая таблица. В ней оптимальный участок ДДТН имеет голубую окраску. Показатели мощности занесены в поле. Поэтому и сам процесс происходит иначе.

По нейопределим внутренние диаметры в указанной отопительной системе.Другие условия: 1 этаж, 6 радиаторов с последовательным подключением.

  1. На входной участок сети от котла идёт 15 кВт. В зоне подходящих динамик отыскиваются показатели, приближенные к 15 кВт. Они таковы: 20 и 25 мм. Выбираем наименьший.
  2. На первом обогревателе тепловое воздействие сокращается до 12 кВт. Этот параметр находится в таблице. На второй радиатор получается также 20 мм.
  3. На третий необходимо воздействие в 10,5 кВт. Находится сечение – оно аналогичное – 20 мм.
  4. На четвёртый приходится 15 мм. Расчёт: 10,5 – 2 = 8,5 кВт.
  5. На пятый то же значение.
  6. На шестой – 12 мм.

По найденным диаметрам труб для отопления определяем маркировку и подходящий материал.

Эти действия применимы для труб из полипропилена и металлопластика. Обладают скромной теплопроводностью. А через каждую стенку получаются несущественные потери. А если для системы взяты трубы из металла, то длина трубопровода получается приличная, такой же получается и потеря через поверхность.

Расчёты сечения металлических аналогов

Для внушительных отопительных сетей с металлическими трубами учитываются тепловые траты через стенки. Они не столь велики, но при большой длине трубы приводят к крайне низким температурам на заключительных обогревателях. И причиной тому может стать ошибочный выбор диаметра.

Условия: стальная труба, D= 40 мм, толщина стенки = 1,4 мм.

Формула расчёта потерь такова: q = k*3.14*(tв-tп)

q — потери тепла на метр трубы,

k – линейный показатель тепловой передачи (для предложенной трубы он таков: 0,272 Вт*м/с);

tв — температурный показатель воды в данной трубе — 80°С;

tп — температурный показатель воздуха в комнате — 22°С.

q = 0,272*3,15*(80-22)=49 Вт/с

Таким образом, на каждом метре потери составляют порядка 50 Вт. Если длина большая, потери могут стать фатальными. Разумеется, чем внушительнее сечение, тем огромнее потери. Если требуется учитывать и такие потери, то во время расчётных действий к сокращению теплового воздействия на радиатор следует приплюсовать потери в трубопроводе. И по общему значению вычисляется нужный диаметр для отопления дома.

Для индивидуальных отопительных технологий подобные значения не пагубны. И при вычислении потерь и мощи оборудования обычно округляют величины к увеличению. Так получается некоторый резерв, позволяющий избегать сложных расчётных операций.

Где взять таблицы?

Все производители труб для котла предлагают их на своих сайтах. Если не удалось отыскать необходимую таблицу, можно выбрать одно из этих действий:

  1. Применить предложенные ниже принципы подбора диаметров.
  2. Другое решение.

Обычно, маркируя трубы, производители обозначают внешние или внутренние параметры. С некоторой погрешностью они приравниваются. Если знаете внутренний диаметр, то можете вычислить и тип, и маркировку по предложенной таблице. Здесь же определяется параметр трубы из прочего материала.

Пример: стоит задача по расчёту диаметр труб из металлопластика для котла. Таблица для данного материала не найдена. Есть данные по полипропилену.Подбираются параметры для него. По таблице вычисляются аналоги для металлопластика. Имеется погрешность. Но если сеть имеет принудительную циркуляцию, эта погрешность приемлема.

Таблица по трубам из разных материалов.

Другой метод определения диаметра

Его основа – логика при изучении многих отопительных систем. Этот метод изобретён монтажниками. Он работает для частных построек и квартир на малогабаритных системах.

Рабочая схема данного метода:

Из многих котлов идут патрубки первого (подачи) и обратного движения. Их параметры:¾ и ½ дюйма. И эта труба применяется для разводки до начального разветвления. А потом на следующей ветке размер сокращается на один шаг.

В системах, скромных по размерам, обычно присутствует 3-9 радиаторов, 2-3 ветки. Для каждой из них приходится 2-3 радиатора. Для подобных сетей эта методика оптимальна. Он приемлем и для одноэтажных частных построек.

Расчет отопления частного дома

Для климата средней полосы тепло в доме является насущной потребностью. Вопрос отопления в квартирах решается районными котельными, ТЭЦ или тепловыми станциями. А как же быть владельцу частного жилого помещения? Ответ один — установка отопительной техники, необходимой для комфортного проживания в доме, она же — автономная система отопления. Чтобы не получить в результате установки жизненно необходимой автономной станции груду металлолома, к проектированию и монтажу следует отнестись скрупулёзно и с большой ответственностью.

Расчет тепловых потерь

Первый этап расчета заключается в расчете тепловых потерь комнаты. Потолок, пол, количество окон, материал из которых изготовлены стены, наличие межкомнатной или входной двери — все это источники теплопотерь.

Рассмотрим на примере угловой комнаты объемом 24,3 куб. м.:

  • площадь комнаты — 18 кв. м. (6 м х 3 м)
  • 1 этаж
  • потолок высотой 2,75 м,
  • наружные стены — 2 шт. из бруса (толщина18 см), обшитые изнутри гипроком и оклеенные обоями,
  • окно — 2 шт., 1,6 м х 1,1 м каждое
  • пол — деревянный утепленный, снизу — подпол.

Расчеты площадей поверхностей:

  • наружных стен за минусом окон: S1 = (6+3) х 2,7 — 2×1,1×1,6 = 20,78 кв. м.
  • окон: S2 = 2×1,1×1,6=3,52 кв. м.
  • пола: S3 = 6×3=18 кв. м.
  • потолка: S4 = 6×3= 18 кв. м.

Теперь, имея все расчеты теплоотдающих площадей, оценим теплопотери каждой:

  • Q1 = S1 х 62 = 20,78×62 = 1289 Вт
  • Q2= S2 x 135 = 3×135 = 405 Вт
  • Q3=S3 x 35 = 18×35 = 630 Вт
  • Q4 = S4 x 27 = 18×27 = 486 Вт
  • Q5=Q+ Q2+Q3+Q4=2810 Bт

Итого: суммарные теплопотери комнаты в самые холодные дни равны 2,81 кВт. Это число записывается со знаком минус и теперь известно сколько тепла необходимо подать в комнату для комфортной температуры в ней.

Расчет гидравлики

Переходим к наиболее сложному и важному гидравлическому расчету — гарантии эффективной и надежной работы ОС.

Единицами расчета гидравлической системы являются:

  • диаметр трубопровода на участках отопительной системы;
  • величины давлений сети в разных точках;
  • потери давления теплоносителя;
  • гидравлическая увязка всех точек системы.

Перед расчетом нужно предварительно выбрать конфигурацию системы, тип трубопровода и регулирующей/запорной арматуры. Затем определиться с видом приборов отопления и их расположением в доме. Составить чертеж индивидуальной системы отопления с указанием номеров, длины расчетных участков и тепловых нагрузок. В заключении выявить основное кольцо циркуляции, включающее поочередные отрезки трубопровода, направленные к стояку (при однотрубной системе) или к самому уделенному прибору отопления (при двухтрубной системе) и обратно к источнику тепла.

При любом режиме эксплуатации СО необходимо обеспечить бесшумность работы. В случае отсутствия неподвижных опор и компенсаторов на магистралях и стояках возникает механический шум из-за температурного удлинения. Использование медных или стальных труб способствует распространению шума по всей системе отопления.

Из-за значительной турбулизации потока, который возникает при увеличенном движении теплоносителя в трубопроводе и усиленном дросселировании потока воды регулирующим клапаном, возникает гидравлический шум. Поэтому, учитывая возможность возникновения шума, необходимо на всех этапах гидравлического расчета и конструирования — подбор насосов и теплообменников, балансовых и регулирующих клапанов, анализ температурных удлинений трубопровода — выбирать соответствующие для заданных исходных условий оптимальное оборудование и арматуру.

Изготовить отопление в частном доме возможно и самостоятельно. Возможные варианты представлены в данной статье: https://teplo.guru/sistemy/varianty-otopleniya-doma-svoimi-rukami.html

Перепады давления в СО

Гидравлический расчет включает имеющиеся перепады давления на вводе отопительной системы:

  • диаметры участков СО
  • регулирующие клапаны, которые устанавливаются на ветках, стояках и подводках приборов отопления;
  • разделительные, перепускные и смесительные клапаны;
  • балансовые клапаны и величины их гидравлической настройки.

При пуске отопительной системы балансовые клапаны настраиваются на схемные параметры настройки.

На схеме отопления обозначается расчетная тепловая нагрузка каждого из отопительных приборов, которая равна тепловой расчетной нагрузке помещения, Q4. В случае наличия более одного прибора необходимо разделить величину нагрузки между ними.

Далее необходимо определить основное циркуляционное кольцо. В однотрубной системе количество колец равно числу стояков, а в двухтрубной — количеству приборов отопления. Клапаны баланса предусматривают для каждого кольца циркуляции, поэтому количество клапанов в однотрубной системе равно числу вертикальных стояков, а в двухтрубной — количеству приборов отопления. В двухтрубной СО балансовые вентили располагают на обратной подводке прибора отопления.

Санитарные нормы и правила, касающиеся отопления в частном доме, представлены здесь: https://teplo.guru/normy/snipy-po-otopleniyu.html

Расчет циркуляционного кольца включает:

  • систему с попутным движением воды. В однотрубных системах кольцо располагается в самом нагруженном стояке, в двухтрубных — в нижнем приборе отопления более нагруженного стояка;
  • систему с тупиковым движением теплоносителя. В однотрубных системах кольцо располагается в самом нагруженном и удаленном стояке, в двухтрубных — в нижнем приборе отопления нагруженного удаленного стояка;
  • горизонтальную систему, где кольцо располагается в более нагруженной ветви 1-го этажа.
Читайте также:  Отключение отопления – отстаиваем свои права

Необходимо из двух направлений расчета гидравлики основного кольца циркуляции выбрать одно.

При первом направлении расчета, диаметр трубопровода и потери давления в кольце циркуляции определяются по задаваемой скорости движения воды на каждом участке основного кольца с последующим подбором насоса циркуляции. Напор насоса Pн, Па определяется в зависимости от вида отопительной системы:

  • для вертикальных бифилярных и однотрубных систем: Рн = Pс. о. — Ре
  • для горизонтальных бифилярных и однотрубных, двухтрубных систем:Рн = Pс. о. — 0,4Ре
  • Pс.о — потери давления в основном кольце циркуляции, Па;
  • Ре — естественное циркуляционное давление, которое возникает вследствие понижения температуры теплоносителя в трубах кольца и приборах отопления, Па.

В горизонтальных трубах скорость теплоносителя принимают от 0,25 м/с, для возможности удаления воздуха из них. Оптимальная расчетная движения теплоносителя в трубах из стали до 0,5 м/с, полимерных и медных — до 0,7 м/с.

После расчета основного кольца циркуляции производят расчет остальных колец путем определения известного давления в них и подбора диаметров по примерной величине удельных потерь Rср.

Применяется направление в системах с местным теплогенератором, в СО при зависимом (при недостаточном давлении на вводе тепловой системы) или независимом присоединении к тепловым СО.

Второе направление расчета заключается в подборе диаметра трубы на расчетных участках и определении потерь давления в кольце циркуляции. Рассчитывается по изначально заданной величине циркуляционного давления. Диаметры участков трубопровода подбирают по примерной величине удельных потерь давления Rср. Этот принцип применяется в расчетах отопительных систем с зависимым присоединением к тепловым сетям, с естественной циркуляцией.

Для исходного параметра расчета нужно определить величину имеющегося циркуляционного перепада давления PP, где PP в системе с естественной циркуляцией равно Pe, а в насосных системах — от вида отопительной системы:

  • в вертикальных однотрубных и бифилярных системах: PР = Рн + Ре
  • в горизонтальных однотрубных, двухтрубных и бифилярных системах: PР = Рн + 0,4.Ре

Расчет трубопроводов СО

Следующей задачей расчета гидравлики является определение диаметра трубопровода. Расчет производится с учетом циркуляционного давления, установленном для данной СО, и тепловой нагрузки. Следует отметить, что в двухтрубных СО с водяным теплоносителем главное циркуляционное кольцо располагается в нижнем приборе отопления, более нагруженного и удаленного от центра стояка.

По формуле Rср = β*?рр/∑L; Па/м определяем среднее значение на 1 метр трубы удельной потери давления от трения Rср, Па/м, где:

  • β — коэффициент, учитывающий часть потери давления на местные сопротивления от общей суммы расчётного циркуляционного давления (для СО с искусственной циркуляцией β=0,65);
  • рр — имеющееся давление в принятой СО, Па;
  • ∑L — сумма всей длины расчётного кольца циркуляции, м.

Расчет количества радиаторов при водяном отоплении

Формула расчета

В создании уютной атмосферы в доме при водяной системе отопления необходимым элементом являются радиаторы. При расчете учитываются общий объем дома, конструкция здания, материал стен, вид батарей и другие факторы.

Например: один кубометр кирпичного дома с качественными стеклопакетами потребует 0,034 кВт; из панели — 0,041 кВт; возведенные согласно всех современных требований — 0,020 кВт.

Расчет производим следующим образом:

  • определяем тип помещения и выбираем вид радиаторов;
  • умножаем площадь дома на указанный тепловой поток;
  • делим полученное число на показатель теплового потока одного элемента (секции) радиатора и округляем результат в большую сторону.

Например: комната 6x4x2,5 м панельного дома (тепловой поток дома 0,041 кВт), объем комнаты V = 6x4x2,5 = 60 куб. м. оптимальный объем теплоэнергии Q = 60×0, 041 = 2,46 кВт3, количество секций N = 2,46 / 0,16 = 15,375 = 16 секций.

Характеристики радиаторов

Тип радиатора

Тип радиатораМощность секцииКоррозийное воздействие кислородаОграничения по PhКоррозийное воздействие блуждающих токовДавление рабочее/ испытательноеГарантийный срок службы (лет)
Чугунный1106.5 — 9.06−9 /12−1510
Алюминиевый175−1997— 8+10−20 / 15−303−10
Трубчатый
Стальной
85+6.5 — 9.0+6−12 / 9−18.271
Биметаллический199+6.5 — 9.0+35 / 573−10

Правильно проведя расчет и монтаж из высококачественных комплектующих, вы обеспечите ваш дом надежной, эффективной и долговечной индивидуальной системой отопления.

Видео осуществления гидравлического расчета

Особенности гидравлического расчета системы радиаторного отопления

Комфорт в загородном доме во многом зависит от надёжной работы системы отопления. Теплоотдача при радиаторном отоплении, системе «тёплый пол» и «тёплый плинтус» обеспечивается за счёт движения по трубам теплоносителя. Поэтому правильному подбору циркуляционных насосов, запорно-регулирующей арматуры, фитингов и определению оптимального диаметра трубопроводов предшествует гидравлический расчёт системы отопления.

Данный расчёт требует профессиональных знаний, поэтому мы в данной части учебного курса «Системы отопления: выбор, монтаж», с помощью специалиста компании REHAU, расскажем:

  • О каких нюансах следует знать перед выполнением гидравлического расчёта.
  • Чем отличаются системы отопления с тупиковым и попутным движением теплоносителя.
  • В чём состоят цели гидравлического расчёта.
  • Как материал труб и способ их соединения оказывает влияние на гидравлический расчёт.
  • Каким образом специальное программное обеспечивание позволяет ускорить и упростить процесс гидравлического расчета.

Нюансы, о которых надо знать перед выполнением гидравлического расчёта

В современной системе отопления протекают сложные гидравлические процессы с динамически меняющимися характеристиками. Поэтому на гидравлический расчёт оказывает влияние множество нюансов: начиная от типа системы отопления, вида отопительных приборов и способа их присоединения, режима регулирования и заканчивая материалом комплектующих.

Важно: Трубопроводная отопительная система загородного дома — это сложная разветвлённая сеть. Гидравлический расчет определяет её правильную работу так, чтобы ко всем отопительным приборам поступало необходимое количество теплоносителя. Правильно рассчитать и спроектировать систему отопления может только квалифицированный специалист, имеющий профильное образование по данной дисциплине.

Системы радиаторной и водопроводной разводок — это разветвленные трубопроводные сети. В трубопроводах давление теряется на трение о стенки труб и на местные сопротивления в фасонных частях при разделении или слиянии потоков, на внезапные расширения или сужения «живого» сечения. Для того чтобы теплоноситель или вода поступали к отопительным приборам или точкам водоразбора в необходимом количестве, трубопроводная сеть должна быть правильно рассчитана.

Вне зависимости от того, какая система отопления смонтирована в доме, например, радиаторная разводка или тёплый пол, принцип гидравлического расчёта одинаков для всех, но каждая система требует индивидуального подхода.

Например, система отопления может быть заправлена водой, этилен- или пропиленгликолем, а это повлияет на гидравлические параметры системы.

У этиленгликоля или пропиленгликоля большая вязкость и меньшая текучесть, чем у воды, а значит, и сопротивление при движении по трубопроводу будет больше. Кроме этого, теплоёмкость этиленгликоля меньше, чем у воды, и составляет 3,45 кДж/(кг▪К), а у воды 4.19 кДж/(кг*К). В связи с этим расход, при том же перепаде температур, должен быть на 20 с лишним процентов выше.

Важно: вид теплоносителя, который будет циркулировать в системе отопления, определяется заранее. Соответственно: проектировщик при гидравлическом расчёте системы отопления должен учесть его характеристики.

Выбор одно- или двухтрубной системы отопления также влияет на методику гидравлического расчёта.

Это связано с тем, что в однотрубной системе вода последовательно проходит через все радиаторы, и расход через все приборы в расчетных условиях будет единым при различных небольших перепадах температур на каждом приборе. В двухтрубной системе вода через отдельные кольца поступает независимо в каждый радиатор. Поэтому в двухтрубной системе перепад температур на всех приборах будет одинаковым и большим, порядка 20 К, а вот расходы через каждый прибор будут существенно различаться.

При гидравлическом расчете выбирается самое нагруженное кольцо. Оно является расчётным. Все остальные кольца увязываются с ним так, чтобы потери в параллельных кольцах были одинаковыми, с соответствующими им участками главного кольца.

При выполнении гидравлического расчета обычно вводятся следующие допущения:

  1. Скорость воды в подводках не более 0,5 м/с, в магистралях в коридорах 0,6-0,8 м/с, в магистралях в подвалах 1,0-1,5 м/с.
  2. Удельные потери давления на трение в трубопроводах – не более 140 Па/м.

Системы отопления с тупиковым и попутным движением теплоносителя

Отметим, что в системах радиаторной разводки, при едином принципе гидравлического расчёта, существуют разные подходы, т.к. системы подразделяются на тупиковые и попутные.

При тупиковой схеме теплоноситель движется по трубам «подачи» и «обратки» в противоположные стороны. И, соответственно, в попутной схеме теплоноситель движется по трубам в одном направлении.

В тупиковых системах расчет ведётся через дальние — наиболее нагруженные участки. Для этого выбирается главное циркуляционное кольцо. Это самое неблагоприятное направление для воды, по которому прежде всего подбираются диаметры отопительных труб. Все остальные второстепенные кольца, которые возникают в этой системе, должны увязываться с главным. В попутной системе расчёт ведётся через средний, наиболее нагруженный, стояк.

В системах водопровода соблюдается аналогичный принцип. Система рассчитывается через самый удалённый и самый нагруженный стояк. Но есть особенность – в расчёте расходов.

Важно: если в радиаторной разводке расход зависит от количества тепла и перепадов температур, то в водопроводе расход зависит от норм водопотребления, а также от типа установленной водоразборной арматуры.

Цели гидравлического расчета

Цели гидравлического расчета заключаются в следующем:

  1. Подобрать оптимальные диаметры трубопроводов.
  2. Увязать давления в отдельных ветвях сети.
  3. Выбрать циркуляционный насос для системы отопления.

Раскроем подробнее каждый из этих пунктов.

1. Подбор диаметров трубопроводов

Чем меньше диаметр трубопровода, тем больше сопротивление оказывается потоку теплоносителя из-за трения о стенки трубопровода и местных сопротивлений на поворотах и ответвлениях. Поэтому для малых расходов, как правило, берутся малые диаметры трубопроводов, для больших расходов, соответственно, большие диаметры, за счёт чего можно ограниченно отрегулировать систему.

Если система разветвлённая – есть короткая и длинная ветка, то на длинной ветке идёт большой расход, а на короткой – меньший. В этом случае короткая ветка должна выполняться из труб меньших диаметров, а длинная ветка должна выполняться из труб большего диаметра.

И, по мере уменьшения расхода, от начала к концу ветки диаметры труб должны уменьшаться так, чтобы скорость теплоносителя была примерно одинакова.

2. Увязка давлений в отдельных ветвях сети

Увязка может производиться подбором соответствующих диаметров труб или, если возможности этого способа исчерпаны, то за счёт установки регуляторов расхода давления или регулировочных вентилей на отдельных ветвях.

Частично мы, как это описано выше, можем увязать давление с помощью подбора диаметров трубопроводов. Но не всегда это удаётся сделать. Например, если берём самый маленький диаметр трубопровода на короткой ветке, а сопротивление в нём все равно недостаточно большое, тогда весь поток воды будет идти через короткую ветку, не заходя в длинную. В этом случае требуется дополнительная регулировочная арматура.

Регулировочная арматура может быть разной.

Бюджетный вариант — ставим регулировочный вентиль — т.е. вентиль с плавной регулировкой, который имеет градацию в настройке. Каждый вентиль имеет свою характеристику. При гидравлическом расчёте проектировщик смотрит, какое давление необходимо погасить, и определяется так называемая невязка давлений между длинной и короткой ветками. Тогда по характеристике вентиля проектировщик определяет, на сколько оборотов этот вентиль, от полностью закрытого положения, надо будет открыть. Например, на 1, на 1.5 или на 2 оборота. В зависимости от степени открытия вентиля будет добавляться разное сопротивление.

Более дорогой и сложный вариант регулировочной арматуры — т.н. регуляторы давления и регуляторы расхода. Это устройства, на которых мы задаём необходимый расход или необходимый перепад давлений, т.е. падение давлений на этой ветке. В этом случае устройства сами контролируют работу системы и, если расход не соответствует требуемому уровню, то они открывают сечение, и расход увеличивается. Если расход слишком большой, то сечение перекрывается. Аналогично происходит и с давлением.

Если все потребители после ночного понижения теплоотдачи одновременно открыли утром свои отопительные приборы, то теплоноситель попытается, в первую очередь, поступать в ближние к тепловому пункту приборы, а до дальних дойдет спустя часы. Тогда сработает регулятор давления, прикрывая ближайшие ветки и, тем самым, обеспечит равномерное поступление теплоносителя во все ветки.

3. Подбор циркуляционного насоса по давлению (напору) и по расходу (подаче)

Расчетные потери давления в главном циркуляционном кольце (с небольшим запасом) определят напор для циркуляционного насоса. А расчетный расход насоса – это суммарный расход теплоносителя по всем ветвям системы. Насос подбирается по напору и по расходу.

Если в системе стоит несколько циркуляционных насосов, то в случае их последовательного монтажа у них суммируется напор, а расход будет общим. Если насосы работают параллельно, то у них суммируется расход, а напор будет одинаковым.

Важно: Определив в ходе гидравлического расчёта потери давления в системе, можно выбрать циркуляционный насос, который оптимально будет соответствовать параметрам системы, обеспечивая оптимум затрат – капитальных (стоимость насоса) и эксплуатационных (стоимость электроэнергии на циркуляцию).

Как выбор комплектующих для системы отопления влияет на гидравлический расчёт

Материал, из которого изготовлены трубы системы отопления, фитинги, а также техника их соединения, оказывает существенное влияние на гидравлический расчет.

Трубы, имеющие гладкую внутреннюю поверхность, уменьшают потери на трение при движении теплоносителя. Это даёт нам преимущества – берём трубопроводы меньшего диаметра и экономим на материале. Также уменьшаются затраты электроэнергии, необходимые для работы циркуляционного насоса. Можно взять насос меньшей мощности, т.к. за счёт меньшего сопротивления в трубопроводах требуется меньший напор.

В местах соединений «фитинг-труба», в зависимости от способа их монтажа, могут быть большие потери, или, наоборот, потери на сопротивление потоку при движении теплоносителя сведены к минимуму.

Например, если используется техника соединения методом «надвижной гильзы», т.е. развальцовывается конец трубопровода, и внутрь вставляется фитинг, то за счёт этого не происходит заужения живого сечения. Соответственно: уменьшается местное сопротивление, и уменьшаются энергетические затраты на циркуляцию воды.

Подведение итогов

Выше уже говорилось, что гидравлический расчёт системы отопления — это сложная задача, требующая профессиональных знаний. Если предстоит спроектировать сильно разветвлённую систему отопления (большой дом), то расчёт вручную отнимает много сил и времени. Для упрощения данной задачи разработаны специальные компьютерные программы.

С помощью этих программ можно сделать гидравлический расчёт, определить регулировочные характеристики запорно-регулировочной арматуры и автоматически составить заказную спецификацию. В зависимости от типа программ, расчёт осуществляется в среде AutoCAD или в собственном графическом редакторе.

Добавим, что сейчас при проектировании промышленных и гражданских объектов наметилась тенденция к использованию BIM технологий (building information modeling). В этом случае все проектировщики работают в едином информационном пространстве. Для этого создаётся «облачная» модель здания. Благодаря этому любые нестыковки выявляются ещё на стадии проектировании, и своевременно вносятся необходимые изменения в проект. Это позволяет точно спланировать все строительные работы, избежать затягивания сроков сдачи объекта и тем самым сократить смету.

Ссылка на основную публикацию